Friday 30 December 2011

Commercial use of the Internet


In recent years the Internet has grown in size and range at a greater rate than  anyone could have predicted. A number of key factors have influenced this growth. Some of the most significant milestones have been the free distribution of Gopher in 1991, the first posting, also in 1991, of the specification for hypertext and, in 1993, the release of Mosaic, the first graphics-based browser. Today the vast majority of the hosts now connected to the Internet are of a commercial nature. This is an area of potential and actual conflict with the initial aims of the Internet, which were to foster open communications between academic and research institutions. However, the continued growth in commercial use of the Internet is inevitable, so it will be helpful to explain how this evolution is taking place. One important initiative to consider is that of the Acceptable Use Policy (AUP). The first of these policies was introduced in 1992 and applies to the use of NSFNET. At the heart of this AUP is a commitment “to support open research and education.” Under “Unacceptable Uses” is a prohibition of “use for for-profit  Chapter 1. Architecture, history, standards, and trends  17activities,” unless covered by the General Principle or as a specifically acceptable use. However, in spite of this apparently restrictive stance, the NSFNET was increasingly used for a broad range of activities, including many of a commercial nature, before reverting to its original objectives in 1995.The provision of an AUP is now commonplace among Internet service providers, although the AUP has generally evolved to be more suitable for commercial use. Some networks still provide services free of any AUP.Let us now focus on the Internet service providers who have been most active in introducing commercial uses to the Internet. Two worth mentioning are PSINet and UUNET, which began in the late 1980s to offer Internet access to both businesses and individuals. The California-based CERFnet provided services free of any AUP. An organization to interconnect PSINet, UUNET, and CERFnet was formed soon after, called the Commercial Internet Exchange (CIX), based on the understanding that the traffic of any member of one network may flow without restriction over the networks of the other members. As of July 1997, CIX had grown to more than 146 members from all over the world, connecting member internets. At about the same time that CIX was formed, a non-profit company, Advance Network and Services (ANS), was formed by IBM, MCI, and Merit, Inc. to operate T1 (subsequently T3) backbone connections for NSFNET. This group was active in increasing the commercial presence on the Internet.ANS formed a commercially oriented subsidiary called ANS CO+RE to provide linkage between commercial customers and the research and education domains. ANS CO+RE provides access to NSFNET as well as being linked to CIX. In 1995 ANS was acquired by America Online.In 1995, as the NSFNET was reverting to its previous academic role, the architecture of the Internet changed from having a single dominant backbone in the U.S. to having a number of commercially operated backbones. In order for the different backbones to be able to exchange data, the NSF set up four Network Access Points (NAPs) to serve as data interchange points between the backbone service providers. Another type of interchange is the Metropolitan Area Ethernet (MAE). Several MAEs have been set up by Metropolitan Fiber Systems (MFS), who also have their own backbone network. NAPs and MAEs are also referred to as public exchange points (IXPs). Internet service providers (ISPs) typically will have connections to a number of IXPs for performance and backup. For a current listing of IXPs, consult the Exchange Point at:Similar to CIX in the United States, European Internet providers formed the RIPE (Réseaux IP Européens) organization to ensure technical and administrative 18 TCP/IP Tutorial and Technical Overview coordination. RIPE was formed in 1989 to provide a uniform IP service to users throughout Europe. Today, the largest internet backbones run at OC48 (2.4 Gbps) or OC192 (9.6 Gbps).

No comments:

Post a Comment